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LOW-DRIVE TEMPERATURE-STABLE MEMORY CORES 

By H. Lessoff 
Electronics  Resea rch  Center  

SUMMARY 

Calcium substitutions to lithium f e r r i t e  a r e  beneficial in controlling the 
gra in  s ize  and porosity and m o s t  likely in lowering the effective magnet ic  
anisotropy. 
uniform proper t ies  and offer advantages over  unsubstituted lithium f e r r i t e  
in m e m o r y  application at excitations in the o r d e r  of 350 mA. 
30/18 s ize  have been prepared  f r o m  molybdenum- substituted l i thium f e r r i t e  
having full d r ive  cu r ren t s  of 260 mA, 
c o r e s  i s  not well  established. 

Memory c o r e s  made  f r o m  calcium compositions have ve ry  

Cores  of 

however,  the uniformity of these 

INTRODUCTION 

Memory c o r e s  made  f r o m  polycrystalline lithium f e r r i t e  tend to  develop 
non-uniform gra in  growth and lose  lithium dubring the sintering step. Non- 
uniformity of grain s ize  (secondary crystall ization) and variabil i ty of res id-  
ual lithium content a r e  deleter ious to the uniformity and reproducibil i ty of 
magnetic pulse proper t ies .  
p ress ing  techniques in  an  attempt to reduce the lo s s  of l i thium and control 
grain s ize;  however,  this  technique is  l imited in effectiveness and not 
readily applicable to production use.  
by other cations,  e . g .  , copper ( r e f .  Z ) ,  manganese ( r e f .  3 ) ,  vanadium 
( r e f s .  4, 5 ) ,  and o thers  ( r e f s .  6 ,  7)  has been used to improve the proper t ies  
of s intered lithium fer r i te .  Most of the substances act  as fluxes to lower 
the sintering tempera ture  o r  as valence sinks to compensate for  the loss  of 
lithium. 

West and Blankenship ( r e f .  1 )  have used  hot- 

Replacement of lithium and/or i ron  

This repor t  descr ibes  the use  of calcium and molybdenum as  substi tutes 
in the preparat ion of tempera ture-  stable m e m o r y  co res .  Substituted l i thium 
compositions which effectively improve c o r e  uniformity and lower the power 
required in m e m o r y  application have been developed for  m e m o r y  co res .  
These  improvements  have been achieved by control of the c e r a m i c  s t ruc tu re ,  
lowering of the coercivity,  and reduction of the sintering tempera ture .  

EXPERIMENTAL 

The formulations in Table I w e r e  p repa red  by no rma l  c e r a m i c  process-  
ing. Most of the compositions as  p repa red  a r e  lithium-rich to compensate 
for  the loss  of l i thium during s inter ing,  while not interfer ing with the  pulse 
proper t ies .  The raw ma te r i a l s ,  consisting of l i thium carbonate,  i ron  oxide, 
calcium carbonate ,  and molybdenum trioxide,  are  "analytical grade.  ( I  Each 



TABLE I 

COMPOSITIONS STUDIED 

Formulat ion 

A 

B 

C 

D 

E 

F 

G 

H 

I 

Composition 

LiO. gCaO. O l F e 2 .  44O3.92 

Lie. 5Ca 0. 01Fe2. 49O3. 995 

Lie. 5Ca 0. 02Fe2.  43O3. 915  

LiO. gCaO. 03Fe2.  42O3. 910 

LiO.  gCaO. 05Fe2. 40°3. 90 

Lie. 5Ca 0. 10Fe2. 35 0 3.875 

LiO.  gFe2 .  45O3. 9 2 5  

LiO. gFe2.  5O4 

LiO. gMOO. OlFe2 .  45O3. 9 3 5  

was chemically analyzed p r i o r  to use .  
an alcohol s l u r r y ,  d r ied ,  and then reacted at 700°C to decompose the c a r -  
bonates and init iate spinel formation. After react ion,  the powder was r e -  
mil led with an organic binder in a n  alcohol s l u r r y ,  then dr ied and sieved.2 
The sieved powder was  p r e s s e d  into toroids  a t  approximately 10  tons / in .  
to yield s intered samples  of the following size: 30-mil outside d iameter  by 
18-mil  inside d iameter  by 6-mil height. All s inter ings w e r e  c a r r i e d  out in 
platinum boats in res i s tance  furnaces .  The furnaces  w e r e  equipped to con- 
t r o l  t empera tu re ,  r a t e  of r i s e ,  soak t ime and t empera tu re ,  and r a t e  of fall .  
The oxygen a tmosphere  was  regulated by means  of cal ibrated f lowmeters .  

The weighed powders were  mil led in  

The s intered samples  w e r e  polished and heat-etched to determine the 
gra in  s t ruc ture .  
the s lope-intercept  method assuming the average shape to  be a t runcated 
octahedron. 
C-526-63T7 "Tentative method of t e s t s  fo r  non-metall ic magnetic core  to be 
used with a two-to-one selection rat io  operating under full  switching condi- 
t ions.  Coercivity was calculated f r o m  the cu r ren t  required to dis turb 
(i. e .  , to cause detectable i r r e v e r s i b l e  induction changes)  the co re  under 
coincident- cur  ren t  operation. 

The number of gra ins  p e r  unit volume was  determined by 

Pu l se  proper t ies  w e r e  measu red  according to A. S. T. M. 

2 



RESULTS AND DISCUSSION 

Ceramic  Structure  

For a given sintering t empera tu re ,  the influence of calcium on the g r a i n  
s t ruc ture  is quite marked .  
substitutions have smaller grain s izes  and g r e a t e r  uniformity of grain s ize  
distribution. 
s ize  as shown in F igu re  2 for  samples  s intered at 1075°C in oxygen. Cal- 
c ium substitutions above 1 .46  atomic percent  resu l t  in a precipitate at the 
grain boundaries. Over the ent i re  range of calcium substitutions, t he re  is 
a marked  dec rease  in the amount of secondary crystall ization and a dec rease  
i n  the porosity of the specimens.  
pure  lithium f e r r i t e  resu l t s  in l a r g e r  gra in  s ize  and a l a rge  increase  in the 
degree  of secondary crystall ization. As the sintering tempera ture  fo r  cal-  
c ium- substituted lithium f e r r i t e  i nc reases ,  the gra in  s ize  a lso inc reases ,  
but secondary crystal l izat ion appears  to be inhibited. 
calcium in lithium fe r r i t e  appears  to be analogous to the influence of thor-  
i u m  oxide on the sintering of yt ter ium oxide a s  discussed by Jorgensen and 
Anderson ( r e f .  8 ) .  

As  shown in F igu re  1 ,  the f e r r i t e s  with calcium 

Increasing the calcium content resu l t s  in decreasing the gra in  

Increasing the  sintering tempera ture  of 

The influence of 

The calcium concentration a t  the grain boundaries would tend to inhibit 
the grain boundary mobility. This inhibition of boundary would prevent  the 
growth of la rge  gra ins  a t  the expense of sma l l e r  crystal l i tes .  The calcium 
a t  high concentration gradients  at the boundaries would also act  to enhance 
vacancy diffusion and allow the removal  of po res  in the grains .  The higher 
the concentrations of calcium, the g rea t e r  would be these effects ( s e e  F i g -  
u r e  2 ) .  

The effect of molybdenum can be considered to  be that of a f l u x  for  
sintering since s inter ing te inpera tures  for constant grain s ize  a r e  reduced 

la l b  I C  

Li0.5Fe2.4503.925 LiO. 5Ca0.02Fe2.4303.915 Li0.5Ca0. 10Fe2. 35O3.875 

F igure  1. - -  Grain structure for  sintering 1 hour at 1075°C (500X) 
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Figure  2. - -  Grain s ize  versus  calcium content 
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for  formulation I; however,  t he re  i s  l i t t le dec rease  in the porosity and 
secondary crystal l izat ion is quite prevalent,. 
do influence the pulse proper t ies  of l i thium fe r r i t e .  

Both calcium and molybdenum 

Magnetic and Pu l se  P r o p e r t i e s  

Calcium has a m a j o r  influence on the pulse proper t ies  and the coercivi ty  
when compared to unsubstituted l i thium f e r r i t e .  
at 1075"C, l i thium f e r r i t e  (composition G )  has  a coercivi ty  of 3. 5 Oe and 
2. 7x105 g ra ins /mm3;  whereas  composition A has  a coercivity of 1 . 8  Oe and 

tion A, should have the higher coercivity i f  there were  no other  fac tors  in- 
fluencing magnetic proper t ie  s .  
tion reduces the effective magnetic anisotropy by a factor  of about 3. 
position G can be s in te red  to give 3 coerci t i ty  of 1 . 8  Oe; however, the number 
of grains  pe r  w-iit volume i s  71x10 
crystall ization. 
crystall ization i s  very  poor.  
st i tuted lithium f e r r i t e  a r e  quite uniform. 
tions such co res  switch f a s t e r  with higher break cu r ren t s  than lithium 
f e r r i t e  (Table 11). 
when s intered for 4 hours  a t  1150°C. 

F o r  a sintering of 1 hour 

9. 3x10 5 grains/" 3 . Normally the s m a l l e r  gra in  s ize  m a t e r i a l ,  composi- 

The resul ts  imply that  the calcium substi tu- 
Com- 

mm-3 with v e r y  extensive secondary 
The uniformity of pulse proper t ies  of c o r e s  with secondary 

The switching proper t ies  of the calcium- sub- 
Under s imi l a r  excitation condi- 

F igu re  3 shows typical pulse proper t ies  of composition B 

TABLE I1 

PULSE PROPEF'TIES O F  CORES::: 

Formulation 

G 

H 

A 

B 

C 

22  

21 

2 3  

2 3  

24 

Z 
dV 

(mv) 
2.8 

2 . 0  

2 . 0  

2 . 5  

2 . 5  

T 

(nsec )  
P 

____ 

440 

430 

390 

340 

350 
I 

(nsec)  

71 0 

700  

680 

640 

6 5 0  

~ 

370 

36 5 

385 

370 

380 

:::(Compatible coercivi ty  dr ive cur ren t  = 600 mA; pulse r i s e  t ime = 
2 0 0  nsec;  pulse duration = 1.2  m s e c ) .  

The lowest dr ive ma te r i a l  developed was made  f r o m  composition I con- 
taining molybdenum. 
ma te r i a l  s intered 1 hour a t  1200°C; however,  yield or uniformity i s  quite 
poor because of excessive secondary crystal l izat ion.  
t ial  l i thium loss  a t  the high sintering tempera ture .  
molybdenum can undergo changes in valence to compensate for  the loss  of 
the lithium. Typical pulse response curves  for this ma te r i a l  a r e  shown in 
F igu re  4 and the influence of tempera ture  a t  constant excitation conditions 
i s  shown in F igure  5. 

The coercivi ty  i s  approximately 0.84 Oe for  the 

There  i s  a lso substan- 
It appears  that  the 
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Figure  3 .  - -  Pul se  response curve  of composition “ B t t  
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